Skip to main content

Engine Works

how a car engine works illustration
 I just didn’t have any interest in tooling around under the hood to figure out how my car works. Except for replacing my air filters or changing the oil every now and then, if I ever had a problem with my car, I’d just take it into the mechanic and when he came out to explain what was wrong, I nodded politely and pretended like I knew what he was talking about.
But lately I’ve had the itch to actually learn the basics of how cars work. I don’t plan on becoming a full on grease monkey, but I want to have a basic understanding of how everything in my car actually makes it go. At a minimum, this knowledge will allow me to have a clue about what the mechanic is talking about the next time I take my car in. Plus it seems to me that a man ought to be able to grasp the fundamentals of the technology he uses every day. When it comes to this website, I know about how coding and SEO works; it’s time for me to examine the more concrete things in my world, like what’s under the hood of my car.
I figure there are other grown men out there who are like me — men who aren’t car guys but are a little curious about how their vehicles work. So I plan on sharing what I’m learning in my own study and tinkering in an occasional series we’ll call Gearhead 101. The goal is to explain the very basics of how various parts in a car work and provide resources on where you can learn more on your own.
So without further ado, we’ll begin our first class of Gearhead 101 by explaining the ins and outs of the heart of a car: the internal combustion engine.

The Internal Combustion Engine

An internal combustion engine is called an “internal combustion engine” because fuel and air combustion inside the engine to create the energy to move the pistons, which in turn move the car (we’ll show you how that happens in detail below).
Contrast that to an external combustion engine, where fuel is burned outside the engine and the energy created from that burning is what powers it. Steam engines are the best example of this. Coal is burned outside of the engine, which heats water to produce steam, which then powers the engine.
Most folks think that in the world of mechanized movement, steam-powered external combustion engines came before the internal combustion variety. The reality is that the internal combustion engine came first. (Yes, the ancient Greeks messed around with steam-powered engines, but nothing practical came from their experiments.)
In the 16th century, inventors created a form of internal combustion engine using gunpowder as the fuel to power the movement of the pistons. Actually, it wasn’t the gunpowder that moved them. The way this early internal combustion engine worked was you’d stuff a piston all the way to the top of a cylinder and then ignite gunpowder beneath the piston. A vacuum would form after the explosion and suck the piston down the cylinder. Because this engine relied on the changes in air pressure to move the piston, they called it the atmospheric engine. It wasn’t very efficient. By the 17thcentury, steam engines were showing a lot of promise, so the internal combustion engine was abandoned.
It wouldn’t be until 1860 that a reliable, working internal combustion engine would be invented. A Belgian fellow by the name of Jean Joseph Nettie Lenoir patented an engine that injected natural gas into a cylinder, which was subsequently ignited by a permanent flame near the cylinder. It worked similarly to the gunpowder atmospheric engine, but not too efficiently.
Building on that work, in 1864 two German engineers named Nicolas August Otto and Eugene Lang en founded a company that made engines similar to Lenoir’s model. Otto gave up managing the company and started working on an engine design that he had been toying with since 1861. His design led to what we now know as the four-stroke engine, and the basic design is still used in cars today.

Comments

Popular posts from this blog

Planetary Gears

As your vehicle reaches higher speeds, it needs less torque to keep the car going. Transmissions can increase or decrease the amount of torque sent to the car’s wheels thanks to gear ratios. The lower a gear ratio is, the more torque is delivered. The higher a gear ratio is, the less torque is delivered. On a manual transmission, you have to move your gear shift to change the gear ratios. On an automatic transmission, gear ratios increase and decrease automatically. And this is able to happen thanks to the ingenious design of a planetary gear. A planetary gear consists of three components: A sun gear.  Sits at the center of the planetary gear set. The planet gears/pinions and their carrier.  Three or four smaller gears that surround the sun gear and are in constant mesh with the sun gear. The planet gears (or pinions) are mounted and supported by the carrier. Each one of the planet gears spins on their own separate shafts that are connected to the carrier. Planet g...

Automatic Transmission

Purpose of a Transmission Before we get into the ins and outs of how an automatic transmission works, let’s do a quick review of why vehicles need a transmission  of any kind  in the first place. As discussed in our primer on how a car engine works, the engine of your vehicle creates rotational power. To move the car, we need to transfer that rotational power to the wheels. That’s what the car’s drive train which the transmission is a part of  does. But here’s the problem: an engine can only spin within a certain speed in order to operate efficiently. If it spins too low, you wouldn’t be able to get the car moving from a standstill; if it spins too fast, the engine can self-destruct. What we need is some way to multiply the power produced by the engine when it’s needed (starting from a standstill, going up a hill, etc.), but also decrease the amount of power sent from the engine when it isn’t needed (going downhill, going really fast, slamming on the brakes). ...

working of Automatic Transmission

As you can see, there are a lot of moving parts inside an automatic transmission. It uses a combination of mechanical, fluid, and electrical engineering to give you a smooth ride from dead stop to highway cruising speed. So let’s walk through a big picture overview of the power flow in an automatic transmission. The engine sends power to the  torque convertor’s pump . The pump sends power to the torque converter’s  turbine  via transmission fluid. The turbine sends the transmission fluid back to the pump via the  stator . The stator multiples the power of the transmission fluid, allowing the pump to send more power back to the turbine. A vortex power rotation is created inside the torque converter. The turbine is connected to a central shaft that connects to the transmission. As the turbine spins, the shaft spins, sending power to the first  planetary gear set  of the transmission. Depending on which  multiple disc clutch  or  ...