Skip to main content

working of Automatic Transmission

As you can see, there are a lot of moving parts inside an automatic transmission. It uses a combination of mechanical, fluid, and electrical engineering to give you a smooth ride from dead stop to highway cruising speed.
So let’s walk through a big picture overview of the power flow in an automatic transmission.
The engine sends power to the torque convertor’s pump.
The pump sends power to the torque converter’s turbine via transmission fluid.
The turbine sends the transmission fluid back to the pump via the stator.
The stator multiples the power of the transmission fluid, allowing the pump to send more power back to the turbine. A vortex power rotation is created inside the torque converter.
The turbine is connected to a central shaft that connects to the transmission. As the turbine spins, the shaft spins, sending power to the first planetary gear set of the transmission.
Depending on which multiple disc clutch or brake band is engaged in the transmission, the power from the torque converter will either cause the sun gear, the planetary carrier, or the ring gear of the planetary gear system to move or stay stationary.
Depending on which parts of the planetary gear system are moving or not determines the gear ratio. Whatever planetary gear arrangement you have (sun gear acting as input, planetary carrier acting as output, ring gear stationary — see above) will determine the amount of power the transmission sends to the rest of the drive train.
That, broadly speaking, is how an automatic transmission works. There are sensors and valves that regulate and modify things, but that’s the basic gist of it.


Comments

Popular posts from this blog

Automatic Transmission

Purpose of a Transmission Before we get into the ins and outs of how an automatic transmission works, let’s do a quick review of why vehicles need a transmission  of any kind  in the first place. As discussed in our primer on how a car engine works, the engine of your vehicle creates rotational power. To move the car, we need to transfer that rotational power to the wheels. That’s what the car’s drive train which the transmission is a part of  does. But here’s the problem: an engine can only spin within a certain speed in order to operate efficiently. If it spins too low, you wouldn’t be able to get the car moving from a standstill; if it spins too fast, the engine can self-destruct. What we need is some way to multiply the power produced by the engine when it’s needed (starting from a standstill, going up a hill, etc.), but also decrease the amount of power sent from the engine when it isn’t needed (going downhill, going really fast, slamming on the brakes). Enter the tra

Survive a Tsunami

How to Survive a Tsunami Tsunamis are capable of causing devastating damage. In 2004, when a massive earthquake struck off the coast of Sumatra, the resulting tsunamis killed an estimated 230,000 people spread across 14 countries, including Kenya, over 4,000 miles away. Despite what you may have seen in cartoons or the latest doomsday blockbuster, tsunamis don’t look like giant versions of the type of curling waves that surfers crave. Instead, tsunamis more closely resemble flash floods. When tsunami waters hit the beach, they may only be as high as 10 feet. But as that water continues to surge inland, it can grow to a height of up to 100 feet and travel for miles. This fast-moving wall of water wreaks havoc on everything in its path, breaking windows, uprooting trees, and snapping power poles. The resulting soup of debris is likely to kill anyone who is pulled in. Surviving them requires a combination of good preparation, quick thinking, and decisive action. Be Pr